论文标题

概念隐喻会影响人类合作的看法

Conceptual Metaphors Impact Perceptions of Human-AI Collaboration

论文作者

Khadpe, Pranav, Krishna, Ranjay, Fei-Fei, Li, Hancock, Jeffrey, Bernstein, Michael

论文摘要

随着对话人工智能(AI)代理商的出现,了解影响用户对这些代理商经历的机制很重要。我们研究设计师工具包中的常见工具:概念隐喻。隐喻可以呈现一个类似于少年,蹒跚学步的幼儿或经验丰富的管家的代理人。隐喻的选择如何影响我们对AI代理的经验?沿着温暖和能力的维度进行抽样隐喻 - 由心理理论定义为人类社会感知变异的主要轴 - 我们进行了一项研究(n = 260),在该研究中,我们可以操纵隐喻,但不是og-wizard-op-ozard-op-ozard-op-ozard-op-ozard-op-op对话剂。根据经验,对参与者进行了调查,以了解他们使用代理商的意图,与代理商合作的愿望以及代理商的可用性。与当前设计师使用高能力隐喻来描述AI产品的趋势相反,我们发现比隐喻对代理的评估相比,比隐喻对高能力的隐喻进行了更好的评估。尽管具有人类水平表现的高能力和低能力代理,并且巫师对状况视而不见,但这种效果仍然存在。第二项研究证实,随着隐喻提高的能力增加,采用意图迅速减少。在第三项研究中,我们评估了隐喻选择对潜在用户尝试尝试该系统的愿望的影响,并发现用户被吸引到投影更高能力和温暖的系统。这些结果表明,预测能力可能有助于吸引新用户,但是这些用户可能会丢弃代理商,除非它可以通过较低的能力隐喻迅速纠正。我们通过回顾性分析结束,该分析发现了隐喻和用户对过去对话剂的态度之间的类似模式,例如小米,Replika,Woebot,Mitsuku和Tay。

With the emergence of conversational artificial intelligence (AI) agents, it is important to understand the mechanisms that influence users' experiences of these agents. We study a common tool in the designer's toolkit: conceptual metaphors. Metaphors can present an agent as akin to a wry teenager, a toddler, or an experienced butler. How might a choice of metaphor influence our experience of the AI agent? Sampling metaphors along the dimensions of warmth and competence---defined by psychological theories as the primary axes of variation for human social perception---we perform a study (N=260) where we manipulate the metaphor, but not the behavior, of a Wizard-of-Oz conversational agent. Following the experience, participants are surveyed about their intention to use the agent, their desire to cooperate with the agent, and the agent's usability. Contrary to the current tendency of designers to use high competence metaphors to describe AI products, we find that metaphors that signal low competence lead to better evaluations of the agent than metaphors that signal high competence. This effect persists despite both high and low competence agents featuring human-level performance and the wizards being blind to condition. A second study confirms that intention to adopt decreases rapidly as competence projected by the metaphor increases. In a third study, we assess effects of metaphor choices on potential users' desire to try out the system and find that users are drawn to systems that project higher competence and warmth. These results suggest that projecting competence may help attract new users, but those users may discard the agent unless it can quickly correct with a lower competence metaphor. We close with a retrospective analysis that finds similar patterns between metaphors and user attitudes towards past conversational agents such as Xiaoice, Replika, Woebot, Mitsuku, and Tay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源