论文标题

精神模拟的神经符号框架

A Neural-Symbolic Framework for Mental Simulation

论文作者

Kissner, Michael

论文摘要

我们提出了一个神经符号框架,用于观察环境,并不断学习视觉语义和直观的物理学,以在交互式模拟中重现它们。该框架由五个部分组成,这是一种基于胶囊的神经符号混合网络,一种逆图形的胶囊,一种可情节的存储器存储观测值,一个直觉物理的相互作用网络,一种不断改善框架和查询语言的元学习剂,可作为框架的模拟界面。通过终生的元学习,胶囊网络会连续扩展和训练,以便在每次迭代中更好地适应其环境。这使其能够使用几种镜头学习新的语义,并且在Oracle的一生中从Oracle中输入最少。从通过观察学到的知识,直观物理的一部分渗透了场景中对象的所有必需物理特性,从而实现了预测。最后,一种自定义查询语言将所有部分联系在一起,允许执行各种心理模拟任务,例如导航,对游戏环境进行分类和模拟,我们通过这些任务来说明我们的新颖方法的潜力。

We present a neural-symbolic framework for observing the environment and continuously learning visual semantics and intuitive physics to reproduce them in an interactive simulation. The framework consists of five parts, a neural-symbolic hybrid network based on capsules for inverse graphics, an episodic memory to store observations, an interaction network for intuitive physics, a meta-learning agent that continuously improves the framework and a querying language that acts as the framework's interface for simulation. By means of lifelong meta-learning, the capsule network is expanded and trained continuously, in order to better adapt to its environment with each iteration. This enables it to learn new semantics using a few-shot approach and with minimal input from an oracle over its lifetime. From what it learned through observation, the part for intuitive physics infers all the required physical properties of the objects in a scene, enabling predictions. Finally, a custom query language ties all parts together, which allows to perform various mental simulation tasks, such as navigation, sorting and simulation of a game environment, with which we illustrate the potential of our novel approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源