论文标题

计算$ \ {1234,3412 \} $ $ s_n $的非平凡等效类

Counting the Nontrivial Equivalence Classes of $S_n$ under $\{1234,3412\}$-Pattern-Replacement

论文作者

Perian, Quinn, Xu, Bella, Zhang, Alexander Lu

论文摘要

我们研究了$ \ {1234,3412 \} $模式替换等价关系,在长度$ n $的集合$ s_n $上,这与Knuth的关系在概念上相似。特别是,我们列举并表征非平凡的等价类,或大小大于1的等价类别,$ s_n $ in $ n \ geq 7 $下的$ \ {1234,3412 \} $ - 等价。这证明了MA的猜想,他在研究模式替换等效关系的情况下与$ s_n $的非平价等效类别的数量与长度$ 4 $的模式进行了$ 4 $的$ s_n $的数量,在这些关系的两个关系下列举了非平凡的类别,并使对第三次宣布第三次估计不足的猜测。

We study the $\{1234, 3412\}$ pattern-replacement equivalence relation on the set $S_n$ of permutations of length $n$, which is conceptually similar to the Knuth relation. In particular, we enumerate and characterize the nontrivial equivalence classes, or equivalence classes with size greater than 1, in $S_n$ for $n \geq 7$ under the $\{1234, 3412\}$-equivalence. This proves a conjecture by Ma, who found three equivalence relations of interest in studying the number of nontrivial equivalence classes of $S_n$ under pattern-replacement equivalence relations with patterns of length $4$, enumerated the nontrivial classes under two of these relations, and left the aforementioned conjecture regarding enumeration under the third as an open problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源