论文标题

样式流:使用条件连续归一化流对Stylegan生成图像的属性调节探索

StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows

论文作者

Abdal, Rameen, Zhu, Peihao, Mitra, Niloy, Wonka, Peter

论文摘要

现在可以通过无条件的gan(例如stylegan)产生高质量,多样化和逼真的图像。但是,存在有限的选项,可以使用(语义)属性控制生成过程,同时仍保留输出质量。此外,由于GAN潜在空间的纠缠性质,沿一个属性进行编辑很容易导致沿其他属性进行不必要的更改。在本文中,在对纠缠潜在空间的条件探索的背景下,我们研究了属性条件的采样和属性控制的编辑的两个子问题。我们通过将条件探索作为一个有条件的连续归一化流动的实例,作为一个由属性特征调节的有条件连续归一化流的实例,我们将样式流作为一种简单,有效且可靠的解决方案。我们使用StyleGAN的面部和汽车潜在空间评估我们的方法,并在真实照片和StyleGan生成的图像上沿各种属性展示了细粒度的分离编辑。例如,对于面部,我们改变了相机姿势,照明变化,表达,面部毛发,性别和年龄。最后,通过广泛的定性和定量比较,我们证明了样式流与其他并发作品的优越性。

High-quality, diverse, and photorealistic images can now be generated by unconditional GANs (e.g., StyleGAN). However, limited options exist to control the generation process using (semantic) attributes, while still preserving the quality of the output. Further, due to the entangled nature of the GAN latent space, performing edits along one attribute can easily result in unwanted changes along other attributes. In this paper, in the context of conditional exploration of entangled latent spaces, we investigate the two sub-problems of attribute-conditioned sampling and attribute-controlled editing. We present StyleFlow as a simple, effective, and robust solution to both the sub-problems by formulating conditional exploration as an instance of conditional continuous normalizing flows in the GAN latent space conditioned by attribute features. We evaluate our method using the face and the car latent space of StyleGAN, and demonstrate fine-grained disentangled edits along various attributes on both real photographs and StyleGAN generated images. For example, for faces, we vary camera pose, illumination variation, expression, facial hair, gender, and age. Finally, via extensive qualitative and quantitative comparisons, we demonstrate the superiority of StyleFlow to other concurrent works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源