论文标题

麦克斯韦冰箱的平衡版本的效率估计

Efficiency estimation for an equilibrium version of Maxwell refrigerator

论文作者

Joseph, Toby, V, Kiran

论文摘要

Mandal等人引入了Maxwell冰箱作为一种可以从冷温储层中传递热量储层的装置。 \ cite {mandal2013a}。该模型具有两个状态恶魔,并且同时与两个热库相互作用。我们制定了更简单的冰箱版本,其中恶魔和位系统分别与储层相互作用,并且持续时间足够长以建立平衡。当用作发动机工作时,设备的效率为$η$,以及作为冰箱工作时的性能系数(COP)。结果表明,最大效率与预期在相同温度之间工作的卡诺发动机/冰箱的效率相匹配。当$ t_h> t_h> t_c \ggΔe$ $($ k_b = 1 $)时,最大功率的COP降低为$ \ frac {1} {t_h} $,其中$ t_h $和$ t_c $是热和冷储层的温度,分别是$δe$的热和冷库。 $η$以加热引擎工作时,设备的最大功率为$ \ frac {t_h} {0.779 + t_h} $当$ t_c \llΔe$和$ t_h \ggΔe$时。

Maxwell refrigerator as a device that can transfer heat from a cold to hot temperature reservoir making use of information reservoir was introduced by Mandal et al. \cite{Mandal2013a}. The model has a two state demon and a bit stream interacting with two thermal reservoirs simultaneously. We work out a simpler version of the refrigerator where the demon and bit system interact with the reservoirs separately and for a duration long enough to establish equilibrium. The efficiency, $η$, of the device when working as an engine as well as the coefficient of performance (COP) when working as a refrigerator are calculated. It is shown that the maximum efficiency matches that of a Carnot engine/refrigerator working between the same temperatures, as expected. The COP at maximum power decreases as $\frac{1}{T_h}$ when $T_h >T_c \gg ΔE$ ($k_B = 1$), where $T_h$ and $T_c$ are the temperatures of the hot and cold reservoirs respectively and $ΔE$ is the level spacing of the demon. $η$ at maximum power of the device, when working as a heat engine, is found to be $\frac{T_h}{0.779 + T_h}$ when $T_c \ll ΔE$ and $T_h \gg ΔE$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源