论文标题
延长线性西格玛模型中的重子波动
Baryon fluctuations in extended linear sigma model
论文作者
论文摘要
在强烈相互作用物质的相图中,交叉和手性相变的一阶之间的临界终点(CEP)的位置是最近研究的粒子物理学的大量研究领域。 Baryon数量的波动和相关数量(例如峰度和其他易感性)被认为是CEP的良好签名,在零和FIMAKOV MESON扩展$(2 + 1)$ themokov polyakov polyakov LineAreal Sigma Sigma模型(EL $σ$ M)上以零和有限$μ_b$ $ $μ__b$进行计算。它与晶格的结果以及其他有效的模型计算进行了比较。在临界终点发现峰度的差异。
The existence and the location of the critical end point (CEP) between the crossover and the first order part of the chiral phase transition in the phase diagram of the strongly interacting matter is a heavily studied area of recent particle physics. The baryon number fluctuations and related quantities such as kurtosis and other susceptibility ratios, that are assumed to be good signatures of CEP, are calculated in an (axial)vector meson extended $(2 + 1)$ flavor Polyakov linear sigma model (EL$σ$M) at zero and finite $μ_B$ . It is compared with the results of lattice as well as other effective model calculations. Divergence of the kurtosis is found at the critical end point.