论文标题
无监督的学习,用于识别主动目标实验中的事件
Unsupervised Learning for Identifying Events in Active Target Experiments
论文作者
论文摘要
本文介绍了无监督的机器学习方法在活动目标检测器(Active-Target时间投影室(AT-TPC))中的事件分离问题的新颖应用。总体目标是在数据分析的早期阶段对类似事件进行分组,从而通过限制不必要事件的计算处理处理来提高效率。引入了$^{46} $ ar上的粒子轨迹的二维投影,将无监督的聚类算法应用于分析粒子轨道的二维投影。我们探索自动编码器神经网络的性能和预训练的VGG16卷积神经网络。我们研究了来自模拟$^{46} $ ar实验的两个数据的聚类性能,以及来自AT-TPC检测器的真实事件。我们发现,应用于VGG16潜在空间中模拟数据的$ k $ -MEANS算法几乎形成了几乎完美的群集。此外,VGG16+$ K $ -MEANS方法可为实际实验数据找到质子事件的高纯度簇。我们还探索了将自动编码器神经网络的潜在空间聚类以进行事件分离的应用。尽管这些网络表现出很强的性能,但它们的结果却很大。
This article presents novel applications of unsupervised machine learning methods to the problem of event separation in an active target detector, the Active-Target Time Projection Chamber (AT-TPC). The overarching goal is to group similar events in the early stages of the data analysis, thereby improving efficiency by limiting the computationally expensive processing of unnecessary events. The application of unsupervised clustering algorithms to the analysis of two-dimensional projections of particle tracks from a resonant proton scattering experiment on $^{46}$Ar is introduced. We explore the performance of autoencoder neural networks and a pre-trained VGG16 convolutional neural network. We study clustering performance on both data from a simulated $^{46}$Ar experiment, and real events from the AT-TPC detector. We find that a $k$-means algorithm applied to simulated data in the VGG16 latent space forms almost perfect clusters. Additionally, the VGG16+$k$-means approach finds high purity clusters of proton events for real experimental data. We also explore the application of clustering the latent space of autoencoder neural networks for event separation. While these networks show strong performance, they suffer from high variability in their results.