论文标题
紧凑的Ricci唯一孔的尖锐的上直径边界
Sharp upper diameter bounds for compact shrinking Ricci solitons
论文作者
论文摘要
我们给出了一个尖锐的上直径,以缩小的Ricci Soliton的标态曲率积分和Perelman的熵功能。尖锐的案例可能在圆形球形上发生。证明主要依赖于渐变的sobolev不平等,梯度缩小了ricci solitons和vitali-type涵盖论点。
We give a sharp upper diameter bound for a compact shrinking Ricci soliton in terms of its scalar curvature integral and the Perelman's entropy functional. The sharp cases could occur at round spheres. The proof mainly relies on a sharp logarithmic Sobolev inequality of gradient shrinking Ricci solitons and a Vitali-type covering argument.