论文标题

从连接组到任务引起的指纹:静止状态功能连接的任务对比的个性化预测

From Connectomic to Task-evoked Fingerprints: Individualized Prediction of Task Contrasts from Resting-state Functional Connectivity

论文作者

Ngo, Gia H., Khosla, Meenakshi, Jamison, Keith, Kuceyeski, Amy, Sabuncu, Mert R.

论文摘要

静止状态功能性MRI(RSFMRI)产生的功能连接组可以用作个体的认知指纹。已证明连接指纹在许多机器学习任务中有用,例如预测特定于主题的行为特征或任务引起的活动。在这项工作中,我们提出了一个基于表面的卷积神经网络(Brainsurfcnn)模型,以预测其静止状态指纹对比的个别任务。我们引入了重建对抗性损失,该损失可以实施模型输出的主体特定性,同时最大程度地减少预测误差。所提出的方法显着提高了预测的对比度的准确性,而对比良好的基线。此外,Brainsurfcnn的预测还超过了主题识别任务中的测试基准。

Resting-state functional MRI (rsfMRI) yields functional connectomes that can serve as cognitive fingerprints of individuals. Connectomic fingerprints have proven useful in many machine learning tasks, such as predicting subject-specific behavioral traits or task-evoked activity. In this work, we propose a surface-based convolutional neural network (BrainSurfCNN) model to predict individual task contrasts from their resting-state fingerprints. We introduce a reconstructive-contrastive loss that enforces subject-specificity of model outputs while minimizing predictive error. The proposed approach significantly improves the accuracy of predicted contrasts over a well-established baseline. Furthermore, BrainSurfCNN's prediction also surpasses test-retest benchmark in a subject identification task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源