论文标题

弦理论和非河流几何形状

String Theory and non-Riemannian Geometry

论文作者

Park, Jeong-Hyuck, Sugimoto, Shigeki

论文摘要

$ \ mathbf {o}(d,d)$协变广义度量标准,被认为是一个真正的基本变量,可以描述Riemannian公制概念不再存在的新几何形状。在这里,我们在此类背景上量化了一个封闭的字符串,并在熟悉的关键维度($ d {= 26} $(或$ d {= 10} $)中识别平坦的,无异常的非riemannian string vacua。值得注意的是,整个BRST闭合的弦光谱仅限于一个没有tachyon的一个级别,并且与双场理论的运动线性方程相匹配。作为一个内部空间,我们的非瑞曼真空吸尘器可能会为传统弦乐紧凑型提供新的途径。

The $\mathbf{O}(D,D)$ covariant generalized metric, postulated as a truly fundamental variable, can describe novel geometries where the notion of Riemannian metric ceases to exist. Here we quantize a closed string upon such backgrounds and identify flat, anomaly-free, non-Riemannian string vacua in the familiar critical dimension, $D{=26}$ (or $D{=10}$). Remarkably, the whole BRST closed string spectrum is restricted to just one level with no tachyon, and matches the linearized equations of motion of Double Field Theory. Taken as an internal space, our non-Riemannian vacua may open up novel avenues alternative to traditional string compactification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源