论文标题
学习作为过滤:对基于尖峰的可塑性的影响
Learning as filtering: implications for spike-based plasticity
论文作者
论文摘要
计算神经科学中的大多数规范模型都将学习任务描述为相对于一组参数的成本函数的优化。但是,随着优化的学习,学习在学习过程中无法解决时间变化的环境。并且参数空间中的结果估计值无法解释不确定性。在这里,我们将学习作为过滤框架,即一种原则性的方法,用于包括时间和参数不确定性。我们为尖峰神经元网络(突触过滤器)得出基于过滤的学习规则 - 并显示其计算和生物学相关性。对于计算相关性,我们表明,与梯度学习规则相比,在体重估计方面,过滤与贝叶斯回归的结合可以提高性能。此外,基于过滤的规则在存在模型不匹配的情况下优于基于梯度的规则,表明更好的概括性能。突触过滤器平均值的动力学与峰值依赖性可塑性(STDP)一致,而方差的动力学对EPSP变异性的峰值依赖性变化做出了新的预测。此外,突触过滤器解释了同型和异突触可塑性之间的实验观察到的负相关。
Most normative models in computational neuroscience describe the task of learning as the optimisation of a cost function with respect to a set of parameters. However, learning as optimisation fails to account for a time varying environment during the learning process; and the resulting point estimate in parameter space does not account for uncertainty. Here, we frame learning as filtering, i.e., a principled method for including time and parameter uncertainty. We derive the filtering-based learning rule for a spiking neuronal network - the Synaptic Filter - and show its computational and biological relevance. For the computational relevance, we show that filtering in combination with Bayesian regression improves performance compared to a gradient learning rule with optimal learning rate in terms of weight estimation. Furthermore, the filtering-based rule outperforms gradient-based rules in the presence of model mismatch, indicating a better generalisation performance. The dynamics of the mean of the Synaptic Filter is consistent with the spike-timing dependent plasticity (STDP) while the dynamics of the variance makes novel predictions regarding spike-timing dependent changes of EPSP variability. Moreover, the Synaptic Filter explains experimentally observed negative correlations between homo- and heterosynaptic plasticity.