论文标题
用AR(P)误差项的线性回归模型的经验可能性估计
Empirical Likelihood Estimation for Linear Regression Models with AR(p) Error Terms
论文作者
论文摘要
线性回归模型是在几个不同字段中分析数据集的有用统计工具。有几种方法可以估计线性回归模型的参数。这些方法通常在正态分布和不相关的误差下执行,均值和恒定方差。但是,对于某些数据集,错误项可能无法满足这些假设中的某些或某些假设。如果错误项相关,例如具有自回归(AR(P))错误项的回归模型,则通常使用正常性假设下的条件最大似然(CML)或通常使用的最小平方(LS)方法来估计感兴趣的参数。对于CML估计,需要对错误项进行分配假设来进行估计,但是,实际上,关于误差项的这种分布假设可能是不可能的。因此,在这种情况下,需要一些替代分布的方法来进行参数估计。在本文中,我们建议使用经验可能性(EL)方法估算具有AR(P)误差项的线性回归模型的参数,该方法是无分布估计方法之一。提供了一项小型仿真研究和数值示例,以评估CML方法所提出的估计方法的性能。模拟研究的结果表明,基于EL方法的估计量与从CML方法获得的估计器相当好,而在几乎所有仿真配置中,就均方误差(MSE)和偏置而言。这些发现也通过数值和真实数据示例的结果证实。
Linear regression models are useful statistical tools to analyze data sets in several different fields. There are several methods to estimate the parameters of a linear regression model. These methods usually perform under normally distributed and uncorrelated errors with zero mean and constant variance. However, for some data sets error terms may not satisfy these or some of these assumptions. If error terms are correlated, such as the regression models with autoregressive (AR(p)) error terms, the Conditional Maximum Likelihood (CML) under normality assumption or the Least Square (LS) methods are often used to estimate the parameters of interest. For CML estimation a distributional assumption on error terms is needed to carry on estimation, but, in practice, such distributional assumptions on error terms may not be plausible. Therefore, in such cases some alternative distribution free methods are needed to conduct the parameter estimation. In this paper, we propose to estimate the parameters of a linear regression model with AR(p) error term using the Empirical Likelihood (EL) method, which is one of the distribution free estimation methods. A small simulation study and a numerical example are provided to evaluate the performance of the proposed estimation method over the CML method. The results of simulation study show that the proposed estimators based on EL method are remarkably better than the estimators obtained from the CML method in terms of mean squared errors (MSE) and bias in almost all the simulation configurations. These findings are also confirmed by the results of the numerical and real data examples.