论文标题

元功能调制器,用于长尾识别

Meta Feature Modulator for Long-tailed Recognition

论文作者

Wang, Renzhen, Hu, Kaiqin, Zhu, Yanwen, Shu, Jun, Zhao, Qian, Meng, Deyu

论文摘要

当训练数据遇到阶级失衡问题时,深层神经网络通常会大大降低。现有方法,例如重新采样和重新加权,通常通过重新安排培训数据的标签分布来解决此问题,以训练网络非常适合符合隐式平衡标签分布。但是,由于培训数据的内部/样本中信息不足,因此大多数人阻碍了学识渊博的功能的代表性能力。为了解决此问题,我们提出了Meta特征调制器(MFM),这是一个元学习框架,可从表示学习的角度对长尾训练数据和平衡的元数据进行建模。具体而言,我们采用可学习的超参数(称为调制参数)来自适应地缩放和移动分类网络的中间特征,并将调制参数与分类网络参数一起优化,以少量平衡的元数据引导。我们进一步设计了一个调制器网络来指导调制参数的生成,可以很容易地适应这种元学习者来训练其他长尾数据集上的分类网络。基准视觉数据集上的广泛实验证实了我们方法对长尾识别任务的优越性,而不是其他最先进的方法。

Deep neural networks often degrade significantly when training data suffer from class imbalance problems. Existing approaches, e.g., re-sampling and re-weighting, commonly address this issue by rearranging the label distribution of training data to train the networks fitting well to the implicit balanced label distribution. However, most of them hinder the representative ability of learned features due to insufficient use of intra/inter-sample information of training data. To address this issue, we propose meta feature modulator (MFM), a meta-learning framework to model the difference between the long-tailed training data and the balanced meta data from the perspective of representation learning. Concretely, we employ learnable hyper-parameters (dubbed modulation parameters) to adaptively scale and shift the intermediate features of classification networks, and the modulation parameters are optimized together with the classification network parameters guided by a small amount of balanced meta data. We further design a modulator network to guide the generation of the modulation parameters, and such a meta-learner can be readily adapted to train the classification network on other long-tailed datasets. Extensive experiments on benchmark vision datasets substantiate the superiority of our approach on long-tailed recognition tasks beyond other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源