论文标题

细分:性能驱动和上下文感知的深神经网络的云边缘分布

Scission: Performance-driven and Context-aware Cloud-Edge Distribution of Deep Neural Networks

论文作者

Lockhart, Luke, Harvey, Paul, Imai, Pierre, Willis, Peter, Varghese, Blesson

论文摘要

在末端设备,边缘资源和云上划分和分配深层神经网络(DNN)具有潜在的双重优势:保留输入数据的隐私,并将入口带宽需求减少到边缘之外。但是,对于给定的DNN,确定用于分发最大性能的DNN的最佳分区配置是一个重大挑战。这是因为需要确定应确定应确定应确定应确定应在目标资源上分配性能的潜在目标硬件资源的组合,同时考虑用户定义的目标/约束以进行分区。本文介绍了Scousion,这是在给定的目标设备,边缘和云资源集上DNN自动基准测试的工具,用于确定最大化DNN性能的最佳分区。决策方法是通过利用目标资源的硬件功能,其本地性,DNN层的特征和网络状况来感知的。实验研究是在18个DNN上进行的。鉴于影响搜索空间的复杂性和维度的数量,分裂做出的决定不能由人手动做出。分裂的基准开销允许定期响应操作更改,而不是实时响应。可分割可在https://github.com/qub-blesson/scission上公开下载。

Partitioning and distributing deep neural networks (DNNs) across end-devices, edge resources and the cloud has a potential twofold advantage: preserving privacy of the input data, and reducing the ingress bandwidth demand beyond the edge. However, for a given DNN, identifying the optimal partition configuration for distributing the DNN that maximizes performance is a significant challenge. This is because the combination of potential target hardware resources that maximizes performance and the sequence of layers of the DNN that should be distributed across the target resources needs to be determined, while accounting for user-defined objectives/constraints for partitioning. This paper presents Scission, a tool for automated benchmarking of DNNs on a given set of target device, edge and cloud resources for determining optimal partitions that maximize DNN performance. The decision-making approach is context-aware by capitalizing on hardware capabilities of the target resources, their locality, the characteristics of DNN layers, and the network condition. Experimental studies are carried out on 18 DNNs. The decisions made by Scission cannot be manually made by a human given the complexity and the number of dimensions affecting the search space. The benchmarking overheads of Scission allow for responding to operational changes periodically rather than in real-time. Scission is available for public download at https://github.com/qub-blesson/Scission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源