论文标题
代数Bethe ansatz for $ \ mathfrak {o} _ {2n+1} $ - 不变的集成模型
Algebraic Bethe ansatz for $\mathfrak{o}_{2n+1}$-invariant integrable models
论文作者
论文摘要
$ \ mathfrak {o} _ {2n+1} $ - 不变量子整合模型在代数Bethe ansatz方法的框架中研究了。 $ \ mathfrak {o} _ {2n + 1} $ - 不变的bethe vector的构造是根据Yangian $ \ Mathcal {d} y(\ Mathfrak {\ Mathfrak {o} _ {o} _ {2n + 1})的Drinfeld电流提出的。计算了这些模型的单构矩阵条目对脱壳伯特矢量的作用。获得了这些向量的递归关系。动作公式可用于调查$ \ mathfrak {o} _ {2n+1} $不变模型中Bethe向量的标量产品的结构。
A class of $\mathfrak{o}_{2n+1}$-invariant quantum integrable models is investigated in the framework of algebraic Bethe ansatz method. A construction of the $\mathfrak{o}_{2n+1}$-invariant Bethe vector is proposed in terms of the Drinfeld currents for the double of Yangian $\mathcal{D}Y(\mathfrak{o}_{2n + 1})$. Action of the monodromy matrix entries onto off-shell Bethe vectors for these models is calculated. Recursion relations for these vectors were obtained. The action formulas can be used to investigate structure of the scalar products of Bethe vectors in $\mathfrak{o}_{2n+1}$-invariant models.