论文标题

关于Schrödinger方程的确切离散化

On the exact discretization of Schrödinger equation

论文作者

Chou, Chih-Lung

论文摘要

我们表明,通过使用离散的傅立叶变换,可以从schrödinger场理论的汉密尔顿操作员自然得出Schrödinger方程的确切离散类似物,从而将操作员从动量表示转换为位置表示。通常用作离散化的schrödinger方程的标准中心差方程实际上描述了一种不同的理论,因为它来自不同的汉密尔顿操作员。离散空间中的位置和动量运算符之间的换向器关系也被得出,并且发现与连续空间中常规的换向器关系不同。两个离散公式之间的比较是通过数值研究在一个维空间中通过平方电位屏障的波包的传输概率进行的。与理论计算相比,两种离散公式均显示出明智而准确的数值结果,尽管使用确切的离散公式时需要更多的计算时间。事件波包的平均波数$ k_0 $必须满足$ | k_0 \ ell | <0.35 $,其中$ \ ell $是位置空间中的晶格间距,以便使用标准中央差异公式获得准确的数值结果。

We show that the exact discrete analogue of Schrödinger equation can be derived naturally from the Hamiltonian operator of a Schrödinger field theory by using the discrete Fourier transform that transforms the operator from momentum representation into position representation. The standard central difference equation that is often used as the discretized Schrödinger equation actually describes a different theory since it is derived from a different Hamiltonian operator. The commutator relation between the position and momentum operators in discrete space is also derived and found to be different from the conventional commutator relation in continuous space. A comparison between the two discretization formulas is made by numerically studying the transmission probability for a wave packet passing through a square potential barrier in one dimensional space. Both discretization formulas are shown to give sensible and accurate numerical results as compared to theoretical calculation, though it takes more computation time when using the exact discretization formula. The average wave number $k_0$ of the incident wave packet must satisfy $|k_0\ell| < 0.35$, where $\ell$ is the lattice spacing in position space, in order to obtain an accurate numerical result by using the standard central difference formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源