论文标题

干预生成对抗网络

Intervention Generative Adversarial Networks

论文作者

Liang, Jiadong, Zhang, Liangyu, Zhang, Cheng, Zhang, Zhihua

论文摘要

在本文中,我们提出了一种稳定生成对抗网络的训练过程以及减轻模式崩溃问题的新方法。主要思想是引入一个正规化术语,我们将干预损失称为目标。我们将最终的生成模型称为干预生成对抗网络(IVGAN)。通过扰动从高斯不变干预措施中从辅助编码网络获得的真实图像的潜在表示,并惩罚了所得生成的图像的分布的差异,干预损失为发电机提供了更有信息的梯度,从而显着提高了GAN的训练稳定性。我们通过固体理论分析和对标准现实世界数据集以及堆叠的MNIST数据集进行了彻底评估来证明我们方法的有效性和效率。

In this paper we propose a novel approach for stabilizing the training process of Generative Adversarial Networks as well as alleviating the mode collapse problem. The main idea is to introduce a regularization term that we call intervention loss into the objective. We refer to the resulting generative model as Intervention Generative Adversarial Networks (IVGAN). By perturbing the latent representations of real images obtained from an auxiliary encoder network with Gaussian invariant interventions and penalizing the dissimilarity of the distributions of the resulting generated images, the intervention loss provides more informative gradient for the generator, significantly improving GAN's training stability. We demonstrate the effectiveness and efficiency of our methods via solid theoretical analysis and thorough evaluation on standard real-world datasets as well as the stacked MNIST dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源