论文标题
野外无监督的凝视校正和动画的双镶嵌模型
Dual In-painting Model for Unsupervised Gaze Correction and Animation in the Wild
论文作者
论文摘要
在本文中,我们解决了野外无监督注视校正的问题,它提出了一种解决方案,该解决方案无需精确注释凝视角度和头部姿势。我们创建了一个名为Celebaze的新数据集,该数据集由两个域X,Y组成,眼睛要么盯着相机或其他地方。我们的方法由三个新型模块组成:凝视校正模块(GCM),凝视动画模块(GAM)和预审前的自动编码器模块(PAM)。具体来说,GCM和GAM使用来自域$ x $的数据进行凝视校正和来自域$ y $的数据,分别训练双涂层网络,用于注视动画。此外,在训练GAM以鼓励从眼睛区域编码的特征与角度信息相关的特征时,提出了一种合成方法,从而产生了凝视动画,可以通过在潜在空间中的插值来实现。为了进一步保留身份信息〜(例如,眼睛形状,虹膜颜色),我们提出了使用自动编码器的PAM,该pam基于自我监督的镜像学习,其中瓶颈特征是角度不变的,并且可以作为额外的输入,以对双涂层模型进行额外的输入。广泛的实验验证了所提出的方法在野外凝视和凝视动画的有效性,并证明了我们在产生更引人注目的结果方面的优越性,而不是最先进的基线。我们的代码,预处理的模型和补充材料可在以下网址提供:https://github.com/zhangqianhui/gazeanimation。
In this paper we address the problem of unsupervised gaze correction in the wild, presenting a solution that works without the need for precise annotations of the gaze angle and the head pose. We have created a new dataset called CelebAGaze, which consists of two domains X, Y, where the eyes are either staring at the camera or somewhere else. Our method consists of three novel modules: the Gaze Correction module (GCM), the Gaze Animation module (GAM), and the Pretrained Autoencoder module (PAM). Specifically, GCM and GAM separately train a dual in-painting network using data from the domain $X$ for gaze correction and data from the domain $Y$ for gaze animation. Additionally, a Synthesis-As-Training method is proposed when training GAM to encourage the features encoded from the eye region to be correlated with the angle information, resulting in a gaze animation which can be achieved by interpolation in the latent space. To further preserve the identity information~(e.g., eye shape, iris color), we propose the PAM with an Autoencoder, which is based on Self-Supervised mirror learning where the bottleneck features are angle-invariant and which works as an extra input to the dual in-painting models. Extensive experiments validate the effectiveness of the proposed method for gaze correction and gaze animation in the wild and demonstrate the superiority of our approach in producing more compelling results than state-of-the-art baselines. Our code, the pretrained models and the supplementary material are available at: https://github.com/zhangqianhui/GazeAnimation.