论文标题

$ \ mathbb {z} _3 $ - $(m_3(k),gl_3(k))$的划分身份

$\mathbb{Z}_3$-graded identities of the pair $(M_3(K),gl_3(K))$

论文作者

Fonseca, Luís Felipe Gonçalves

论文摘要

令$ m_n(k)$为无限积分域$ k $上的$ n \ times n $矩阵的代数。令$ gl_n(k)$为$ n \ times n $矩阵的Lie代数,其通常是$ k $的lie产品。令$ g = \ {g_1,\ ldots,g_n \} $为一组订单$ n $。我们描述了构成对$ g $ $ g $ grad $(m_n(k),gl_n(k))$的多项式,其中由$ n $ -tuple $(g_1,\ ldots,g_n)$引起的基本$ g $ - 级。最后,我们描述了$ \ mathbb {z} _3 $ raded $(m_3(k),gl_3(k))$的明确基础。

Let $M_n(K)$ be the algebra of $n \times n$ matrix over an infinite integral domain $K$. Let $gl_n(K)$ be the Lie algebra of $n \times n$ matrix with the usual Lie product over $K$. Let $G = \{g_1,\ldots,g_n\}$ be a group of order $n$. We describe the polynomials that form a basis for the $G$-graded identities of the pair $(M_n(K),gl_n(K))$ with an elementary $G$-grading induced by the $n$-tuple $(g_1,\ldots,g_n)$. In the end, we describe an explicit basis for the $\mathbb{Z}_3$-graded identities of the pair $(M_3(K),gl_3(K))$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源