论文标题

使用神经网络并多样化差异演化进行动态优化

Using Neural Networks and Diversifying Differential Evolution for Dynamic Optimisation

论文作者

Shoreh, Maryam Hasani, Aragonés, Renato Hermoza, Neumann, Frank

论文摘要

动态优化发生在各种现实世界中。为了解决这些问题,由于其有效性和最低设计工作,进化算法已被广泛使用。但是,对于动态问题,在标准进化算法之上需要额外的机制。其中,多样性机制已被证明在处理动力学方面具有竞争力,最近,为此目的,神经网络的使用变得流行。考虑到在过程中使用神经网络的复杂性与简单多样性机制相比,我们研究了它们是否具有竞争力,并有可能将它们整合起来改善结果。但是,为了进行公平的比较,我们需要考虑每种算法的相同时间预算。因此,我们使用壁钟时间安排,而不是通常的健身评估数量作为可用时间的度量。结果表明,在整合神经网络和多样性机制时,改善的重要性取决于变化的类型和频率。此外,我们观察到,对于差异进化,使用神经网络时的人群中有适当的多样性在神经网络改善结果的能力中起着关键作用。

Dynamic optimisation occurs in a variety of real-world problems. To tackle these problems, evolutionary algorithms have been extensively used due to their effectiveness and minimum design effort. However, for dynamic problems, extra mechanisms are required on top of standard evolutionary algorithms. Among them, diversity mechanisms have proven to be competitive in handling dynamism, and recently, the use of neural networks have become popular for this purpose. Considering the complexity of using neural networks in the process compared to simple diversity mechanisms, we investigate whether they are competitive and the possibility of integrating them to improve the results. However, for a fair comparison, we need to consider the same time budget for each algorithm. Thus, instead of the usual number of fitness evaluations as the measure for the available time between changes, we use wall clock timing. The results show the significance of the improvement when integrating the neural network and diversity mechanisms depends on the type and the frequency of changes. Moreover, we observe that for differential evolution, having a proper diversity in population when using neural networks plays a key role in the neural network's ability to improve the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源