论文标题

SyndistNet:自我监督的单眼鱼眼摄像头距离估计与语义分段协同自主驾驶协同

SynDistNet: Self-Supervised Monocular Fisheye Camera Distance Estimation Synergized with Semantic Segmentation for Autonomous Driving

论文作者

Kumar, Varun Ravi, Klingner, Marvin, Yogamani, Senthil, Milz, Stefan, Fingscheidt, Tim, Maeder, Patrick

论文摘要

单眼深度估计的最先进的自我监督学习方法通​​常受到规模歧义。当对复杂投影模型(例如Fisheye和全向相机)的距离估计应用距离时,它们并不能很好地概括。本文介绍了一种新型的多任务学习策略,以改善鱼眼和针孔摄像头图像的自我监督的单眼距离估计。我们对这项工作的贡献是三重的:首先,我们使用基于自我注意的编码器以及对解码器的强大语义特征指南介绍了一种新颖的距离估计网络体系结构,可以以一阶段的方式进行培训。其次,我们整合了广义的鲁棒损失函数,该功能可显着提高性能,同时消除对重参数损失的超参数调整的需求。最后,我们减少了使用语义掩盖策略违反静态世界假设的动态对象引起的工件。我们可以大大改善先前关于Fisheye的RMSE的RMSE降低25%。由于在鱼眼摄像机上几乎没有工作,因此我们使用针孔模型评估了Kitti所提出的方法。我们在不需要外部规模估计的情况下实现了自我监管方法之间的最先进的表现。

State-of-the-art self-supervised learning approaches for monocular depth estimation usually suffer from scale ambiguity. They do not generalize well when applied on distance estimation for complex projection models such as in fisheye and omnidirectional cameras. This paper introduces a novel multi-task learning strategy to improve self-supervised monocular distance estimation on fisheye and pinhole camera images. Our contribution to this work is threefold: Firstly, we introduce a novel distance estimation network architecture using a self-attention based encoder coupled with robust semantic feature guidance to the decoder that can be trained in a one-stage fashion. Secondly, we integrate a generalized robust loss function, which improves performance significantly while removing the need for hyperparameter tuning with the reprojection loss. Finally, we reduce the artifacts caused by dynamic objects violating static world assumptions using a semantic masking strategy. We significantly improve upon the RMSE of previous work on fisheye by 25% reduction in RMSE. As there is little work on fisheye cameras, we evaluated the proposed method on KITTI using a pinhole model. We achieved state-of-the-art performance among self-supervised methods without requiring an external scale estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源