论文标题

维纳空间中高斯乘法混乱的几何形状

Geometry of the Gaussian multiplicative chaos in the Wiener space

论文作者

Bröker, Yannic, Mukherjee, Chiranjib

论文摘要

我们开发了一种研究在无限尺寸设置中高斯乘法混乱(GMC)的几何特性的方法。选择基本空间是具有维也纳量度的连续函数的空间,随机场是针对布朗路径集成的时空白噪声。在此设置中,我们表明,在任何维度$ d \ geq 1 $中,对于任何反向温度,球的GMC-golume在所有路径上均匀地围绕所有路径均匀,并以明显的衰减速率呈指数衰减。指数率反映了两个竞争术语之间的平衡,即Dirichlet Laplacian的主要特征值和在[MV14]早期开发的某个紧凑型上定义的能量功能。对于$ d \ geq 3 $和高温,也证明了基础高斯田地在GMC下达到非常高的值 - 也就是说,在此制度中,所有路径均为“ GMC-Thick”。这两种陈述都是由$ 2D $ liouville量子重力捕获的类似行为的自然无限尺寸扩展,并反映了GMC的某种“非典型行为”:虽然GMC体积在所有路径上均匀地均匀地衰减,而在所有路径上,该田地本身在所有路径上都可以在所有路径上获得大量的较大值,而在所有路径上进行采样时,在所有路径上都可以衰减。还表明,尽管在任何温度下的体积呈指数衰减,但对于足够小的温度,两种独立路径的归一化重叠倾向于在其大多数允许的时间范围内仅遵循只有有限数量的独立路径之一,从而允许GMC概率沿着此类轨迹积累大多数质量。

We develop an approach for investigating geometric properties of Gaussian multiplicative chaos (GMC) in an infinite dimensional set up. The base space is chosen to be the space of continuous functions endowed with Wiener measure, and the random field is a space-time white noise integrated against Brownian paths. In this set up, we show that in any dimension $d\geq 1$ and for any inverse temperature, the GMC-volume of a ball, uniformly around all paths, decays exponentially with an explicit decay rate. The exponential rate reflects the balance between two competing terms, namely the principal eigenvalue of the Dirichlet Laplacian and an energy functional defined over a certain compactification developed earlier in [MV14]. For $d\geq 3$ and high temperature, the underlying Gaussian field is also shown to attain very high values under the GMC -- that is, all paths are "GMC-thick" in this regime. Both statements are natural infinite dimensional extensions of similar behavior captured by $2d$ Liouville quantum gravity and reflect a certain "atypical behavior" of the GMC: while the GMC volume decays exponentially fast uniformly over all paths, the field itself attains atypically large values on all paths when sampled according to the GMC. It is also shown that, despite the exponential decay of volume for any temperature, for small enough temperature, the normalized overlap of two independent paths tends to follow one of only a finite number of independent paths for most of its allowed time horizon, allowing the GMC probability to accumulate most of its mass along such trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源