论文标题
3D中流体结构相互作用的时间依赖性的FEM-BEM耦合方法
A time-dependent FEM-BEM coupling method for fluid-structure interaction in 3d
论文作者
论文摘要
我们考虑了时间域中流体结构相互作用的3D FEM-BEM耦合方法的适当性和先验误差估计。对于浸入液体中的弹性体,流体的外部线性波方程将减小为涉及庞加尔 - 斯泰克洛夫操作员的边界上的积分方程。最终的问题是使用时域中的盖尔金边界元素方法解决的,并耦合到弹性主体内部的Lamé方程的有限元方法。基于与时间无关的耦合公式的思想,我们获得了先验误差估算,并讨论了提出的方法的实现。数值实验说明了我们在模型问题方案的表现。
We consider the well-posedness and a priori error estimates of a 3d FEM-BEM coupling method for fluid-structure interaction in the time domain. For an elastic body immersed in a fluid, the exterior linear wave equation for the fluid is reduced to an integral equation on the boundary involving the Poincaré-Steklov operator. The resulting problem is solved using a Galerkin boundary element method in the time domain, coupled to a finite element method for the Lamé equation inside the elastic body. Based on ideas from the time-independent coupling formulation, we obtain an a priori error estimate and discuss the implementation of the proposed method. Numerical experiments illustrate the performance of our scheme for model problems.