论文标题
地图的Lyapunov指数,通过Riemann Zeta-unction的非平凡零
Lyapunov exponents for the map that passes through the non-trivial zeros of Riemann zeta-function
论文作者
论文摘要
Riemann假设是数字理论的主要开放问题,一些科学家正在试图解决这个问题。在这方面,在最近的工作[8]中,已经提出了一个差异方程,该方程在临界范围内计算了第n个非平凡零。在这项工作中,我们试图通过计算该非线性图的Lyapunov编号来优化此估计,以寻求分叉参数的最佳价值。提出了分析结果。
The Riemann Hypothesis is the main open problem of Number Theory and several scientists are trying to solve this problem. In this regard, in a recent work [8], a difference equation has been proposed that calculates the nth non-trivial zero in the critical range. In this work, we seek to optimize this estimation by calculating Lyapunov numbers for this non-linear map in order to seek the best value for the bifurcation parameter. Analytical results are presented.