论文标题
调度方法以减少功能的响应延迟为服务
Scheduling Methods to Reduce Response Latency of Function as a Service
论文作者
论文摘要
与完整的虚拟机或Linux容器相比,功能作为服务(FAAS)允许云客户部署到云个人功能。所有主要的云提供商都提供FAAS产品(Amazon Lambda,Google Cloud功能,Azure无服务器);还有带有商业产品(Adobe I/O运行时,IBM Cloud功能)的流行开源实现(Apache OpenWhisk)。 FAAS的一个新功能是功能组成:一个函数可以(顺序地)调用另一个函数,进而调用另一个函数 - 形成一系列调用链。从基础架构的角度来看,组成的FAA比虚拟机或容器不透明。我们表明,此附加信息使基础架构可以减少响应延迟。特别是,了解未来调用的顺序,基础架构可以安排这些调用以及环境准备。我们将FAA中的资源管理建模为一个调度问题,结合了(1)调用测序,(2)在计算机上部署执行环境,以及(3)将调用分配给部署环境。对于每个方面,我们提出启发式方法。我们通过模拟一系列合成工作负载来探索他们的性能。我们的结果表明,如果与调用时间相比,设置时间很长,那么使用有关功能组成的信息的算法始终超过贪婪,近视算法,从而导致响应延迟的大幅下降。
Function as a Service (FaaS) permits cloud customers to deploy to cloud individual functions, in contrast to complete virtual machines or Linux containers. All major cloud providers offer FaaS products (Amazon Lambda, Google Cloud Functions, Azure Serverless); there are also popular open-source implementations (Apache OpenWhisk) with commercial offerings (Adobe I/O Runtime, IBM Cloud Functions). A new feature of FaaS is function composition: a function may (sequentially) call another function, which, in turn, may call yet another function - forming a chain of invocations. From the perspective of the infrastructure, a composed FaaS is less opaque than a virtual machine or a container. We show that this additional information enables the infrastructure to reduce the response latency. In particular, knowing the sequence of future invocations, the infrastructure can schedule these invocations along with environment preparation. We model resource management in FaaS as a scheduling problem combining (1) sequencing of invocations, (2) deploying execution environments on machines, and (3) allocating invocations to deployed environments. For each aspect, we propose heuristics. We explore their performance by simulation on a range of synthetic workloads. Our results show that if the setup times are long compared to invocation times, algorithms that use information about the composition of functions consistently outperform greedy, myopic algorithms, leading to significant decrease in response latency.