论文标题
通用C* - 代数的无限总和关系
Infinite sum relations on universal C*-algebras
论文作者
论文摘要
我们从发电机和关系中扩展了普遍C*代数的通常理论,以便使用强大的操作员拓扑来描述某些关系。特别是,我们可以允许一些无限的关系。我们证明了定义代数的通用特性,并展示了如何使用无限总和关系来描述无限异构体的Cuntz代数以及EXEL-LACA代数。最后,我们给出了一些足够的条件,以何时由投影和部分等法产生的c* - 代数是使用规范关系的通用c* - 代数,以防万一仍然希望避免使用与强操作员拓扑的关系。
We extend the usual theory of universal C*-algebras from generators and relations in order to allow some relations to be described using the strong operator topology. In particular, we can allow some infinite sum relations. We prove a universal property for the algebras we define and we show how the Cuntz algebra of infinite isometries as well as the Exel-Laca algebras can be described using infinite sum relations. Finally, we give some sufficient conditions for when a C*-algebra generated by projections and partial isometries is a universal C*-algebra using only norm relations, in case one still wants to avoid using relations with respect to the strong operator topology.