论文标题

$ ads_3 \ times s^3 $与混合通量

Neumann-Rosochatius system for (m,n) string in $AdS_3 \times S^3$ with mixed flux

论文作者

Chakraborty, Adrita, Panigrahi, Kamal L.

论文摘要

$ sl(2,\ mathbb {z})$用于探针$(m,n)$ string的不变性动作,$ ads_3 \ times s^3 \ times s^3 \ times t^4 $带有混合三型通量的t^4 $可以通过一维neumant-neumann-rosochatius(nr)系统的一维变形来描述。我们通过求解可集成的运动方程来介绍可集成模型的变形特征和研究旋转和脉动解决方案的通用类别。对于旋转字符串,可以用椭圆函数表示显式解决方案。我们利用运动积分来找出针对恒定半径溶液的特定情况的保守电荷之间的缩放关系。然后,我们研究了$ R_T \ Times S^3 $的关闭$(m,n)$ string脉动。我们找到字符串配置文件,并根据振荡号$(\ cal {n})$和Angular Momentum $(\ Cal {J})$计算此类脉动字符串的总能量。

$SL(2,\mathbb{Z})$ invariant action for probe $(m,n)$ string in $AdS_3\times S^3\times T^4$ with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann-Rosochatius (NR) system. We present the deformed features of the integrable model and study general class of rotating and pulsating solutions by solving the integrable equations of motion. For the rotating string, the explicit solutions can be expressed in terms of elliptic functions. We make use of the integrals of motion to find out the scaling relation among conserved charges for the particular case of constant radii solutions. Then we study the closed $(m,n)$ string pulsating in $R_t\times S^3$. We find the string profile and calculate the total energy of such pulsating string in terms of oscillation number $(\cal{N})$ and angular momentum $(\cal{J})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源