论文标题

红蓝色图中的单色三角包装

Monochromatic triangle packings in red-blue graphs

论文作者

Gruslys, Vytautas, Letzter, Shoham

论文摘要

我们证明,在$ k_n $的每$ 2 $ edge上,都有$ n^2/12 + o(n^2)$ edge-dise-disshot-dishoint单色三角形的集合,从而证实了erdős的猜想。我们还证明了相应的稳定性结果,这表明接近上述绑定的$ 2 $颜色具有接近两分的颜色类。作为证明的一部分,我们确认了Tyomkyn最近对该问题的分数版本的猜想。

We prove that in every $2$-edge-colouring of $K_n$ there is a collection of $n^2/12 + o(n^2)$ edge-disjoint monochromatic triangles, thus confirming a conjecture of Erdős. We also prove a corresponding stability result, showing that $2$-colourings that are close to attaining the aforementioned bound have a colour class which is close to bipartite. As part of our proof, we confirm a recent conjecture of Tyomkyn about the fractional version of this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源