论文标题

量子状态的rényi复杂度比中心电势的特性

Properties of Rényi complexity ratio of quantum states for central potential

论文作者

Nath, Debraj

论文摘要

引入了三个密度函数的rényi复杂性比,用于三个和多维量子系统。定义了几个密度函数的定位属性,并通过Lebesgue Measure证明了有关Rényi复杂性比率接近连续特性的五个定理。证明了Rényi复杂度比的某些特性,并研究了不同的量子系统。已提出了用于伪harmonic的解决方案的Rényi复杂性比,基于Rényi熵的统计复杂性的精确分析形式,基于Rényi熵的统计复杂性和一系列同一势势。对于某些双原子分子(CO,NO,N $ _2 $,CH,H $ _2 $和SCH)以及其他一些量子系统,验证了Rényi复杂性比率的某些属性。

Rényi complexity ratio of two density functions is introduced for three and multidimensional quantum systems. Localization property of several density functions are defined and five theorems about near continuous property of Rényi complexity ratio are proved by Lebesgue measure. Some properties of Rényi complexity ratio are demonstrated and investigated for different quantum systems. Exact analytical forms of Rényi entropy, Rényi complexity ratio, statistical complexities based on Rényi entropy for integral order have been presented for solutions of pseudoharmonic and a family of isospectral potentials. Some properties of Rényi complexity ratio are verified for some diatomic molecules (CO, NO, N$_2$, CH, H$_2$, and ScH) and for some other quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源