论文标题
非依赖主义开放式弦理论中的t偶对性
T-Duality in Nonrelativistic Open String Theory
论文作者
论文摘要
非同性主义开放式弦理论是由一种世界表格理论定义的,该理论产生了伽利略式的弦谱,并通过非依赖主义的杨麦尔理论在低能方面描述。我们研究了Sigma模型的路径积分中的T偶性变换,该模型描述了非依赖主义开放式弦理论,该理论与任意的闭合字符串背景结合,由弦牛顿 - 卡丹几何形状,kalb-ramond和dilaton场描述。我们证明,t偶数转换映射了非依赖主义开放式弦理论,以与离散光锥量化(DLCQ)中的相对论和非共同开放弦理论(DLCQ),这是一种与矩阵字符串理论相关的量化方案。我们还展示了非派生的开放式弦理论的世界volume动力学如何通过狄拉克出生的式式式式动作图描述给了狄拉克出生的式侵略动作,描述了开放字符串理论的DLCQ和非交易性开放式弦乐理论的世界范围理论。
Nonrelativistic open string theory is defined by a worldsheet theory that produces a Galilean invariant string spectrum and is described at low energies by a nonrelativistic Yang-Mills theory. We study T-duality transformations in the path integral for the sigma model that describes nonrelativistic open string theory coupled to an arbitrary closed string background, described by a string Newton-Cartan geometry, Kalb-Ramond, and dilaton field. We prove that T-duality transformations map nonrelativistic open string theory to relativistic and noncommutative open string theory in the discrete light cone quantization (DLCQ), a quantization scheme relevant for Matrix string theory. We also show how the worldvolume dynamics of nonrelativistic open string theory described by the Dirac-Born-Infeld type action maps to the Dirac-Born-Infeld actions describing the worldvolume theories of the DLCQ of open string theory and noncommutative open string theory.