论文标题

使用ECG信号的多域融合进行多层应力评估

Multi-level Stress Assessment Using Multi-domain Fusion of ECG Signal

论文作者

Ahmad, Zeeshan, Khan, Naimul

论文摘要

使用ECG作为生理信号的压力分析和心理情感状态评估是生物医学信号处理中的一个燃烧研究主题。但是,现有文献仅提供对压力的二元评估,而多个评估的评估可能对医疗保健应用更有益。此外,在当前的研究中,在空间域或变换域中独立检查了用于应力分析的ECG信号,但是融合这些域的优势尚未得到充分利用。为了获得融合不同域的最大优势,我们引入了一个具有多个应力水平的数据集,然后通过新的深度学习方法将ECG信号基于R-R峰转换为信号图像,而没有任何特征提取,然后使用新颖的深度学习方法对这些水平进行了分类。此外,我们通过分别使用Gabor小波变换(GWT)和离散的傅立叶变换(DFT)将信号图像通过将其转换为时频和频域来制作信号图像。卷积神经网络(CNN)用于从不同方式提取特征,然后进行决策水平融合以提高分类精度。与15个用户收集的内部数据集的实验结果表明,使用建议的融合框架并使用ECG信号进行图像转换,我们的平均准确度为85.45%。

Stress analysis and assessment of affective states of mind using ECG as a physiological signal is a burning research topic in biomedical signal processing. However, existing literature provides only binary assessment of stress, while multiple levels of assessment may be more beneficial for healthcare applications. Furthermore, in present research, ECG signal for stress analysis is examined independently in spatial domain or in transform domains but the advantage of fusing these domains has not been fully utilized. To get the maximum advantage of fusing diferent domains, we introduce a dataset with multiple stress levels and then classify these levels using a novel deep learning approach by converting ECG signal into signal images based on R-R peaks without any feature extraction. Moreover, We made signal images multimodal and multidomain by converting them into time-frequency and frequency domain using Gabor wavelet transform (GWT) and Discrete Fourier Transform (DFT) respectively. Convolutional Neural networks (CNNs) are used to extract features from different modalities and then decision level fusion is performed for improving the classification accuracy. The experimental results on an in-house dataset collected with 15 users show that with proposed fusion framework and using ECG signal to image conversion, we reach an average accuracy of 85.45%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源