论文标题

半径谷的性质:从形成和进化模型的提示

The Nature of the Radius Valley: Hints from Formation and Evolution Models

论文作者

Venturini, Julia, Guilera, Octavio M., Haldemann, Jonas, Ronco, M. Paula, Mordasini, Christoph

论文摘要

开普勒尺寸分布中半径谷的存在是理解地球和海王星之间具有半径的外部行星的起源和组成的最重要的观察性约束之一。这项工作的目的是提供对半径谷的存在的见解,首先是纯粹的构造观点,其次是组合形成 - 进化模型。我们运行全球行星形成模拟,包括通过凝结,漂移和碎片化对灰尘的演变;以及通过粘性积聚和光蒸发的气体盘的演变。行星通过硅酸盐或冰卵石积聚从月球质量的胚胎生长,具体取决于其相对于水冰线的位置。我们说明气体积聚和I型/II迁移。我们进行了广泛的参数研究,评估了圆盘特性和胚胎的初始位置的广泛范围。我们解释了形成后光蒸发驱动的质量损失。我们发现,由于水冰线的灰尘特性的变化,岩石芯通常形成$ \ sim $ 3 m $ _ {\ oplus} $,最大质量为$ \ sim $ 5 m $ _ {\ oplus} $ m $ _ {\ oplus} $稀缺。当忽略气态信封时,岩石和冰冷的核心自然地说明了开普勒尺寸分布的两个峰。与$ \ sim $ 10 m $ _ {\ oplus} $更大的核心信封的存在更大,使这些行星的半径高于4 r $ _ {\ oplus} $。虽然开普勒尺寸分布的第一个峰无疑是裸露的岩体填充的,但第二个峰可以托管富含水的水,H-HE气氛。某些包络损失机制应在短轨道时期有效地运行,以解释$ \ sim $ 10-40 m $ $ _ {\ oplus} $行星的存在。

The existence of a Radius Valley in the Kepler size distribution stands as one of the most important observational constraints to understand the origin and composition of exoplanets with radii between that of Earth and Neptune. The goal of this work is to provide insights into the existence of the Radius Valley from, first, a pure formation point of view, and second, a combined formation-evolution model. We run global planet formation simulations including the evolution of dust by coagulation, drift and fragmentation; and the evolution of the gaseous disc by viscous accretion and photoevaporation. A planet grows from a moon-mass embryo by either silicate or icy pebble accretion, depending on its position with respect to the water ice line. We account for gas accretion and type-I/II migration. We perform an extensive parameter study evaluating a wide range in disc properties and embryo's initial location. We account for photoevaporation driven mass-loss after formation. We find that due to the change in dust properties at the water ice line, rocky cores form typically with $\sim$3 M$_{\oplus}$ and have a maximum mass of $\sim$5 M$_{\oplus}$, while icy cores peak at $\sim$10 $M_{\oplus}$, with masses lower than 5 M$_{\oplus}$ being scarce. When neglecting the gaseous envelope, rocky and icy cores account naturally for the two peaks of the Kepler size distribution. The presence of massive envelopes for cores more massive than $\sim$10 M$_{\oplus}$ inflates the radii of those planets above 4 R$_{\oplus}$. While the first peak of the Kepler size distribution is undoubtedly populated by bare rocky cores, the second peak can host water-rich planets with thin H-He atmospheres. Some envelope-loss mechanism should operate efficiently at short orbital periods to explain the presence of $\sim$10-40 M$_{\oplus}$ planets falling in the second peak of the size distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源