论文标题

$*$ - bimodules

$*$-Bimodules

论文作者

Schmüdgen, Konrad

论文摘要

A $*$-bimodule for a unital $*$-algebra $A$ is an $A$-bimodule $X$ which is a vector space with involution $x\mapsto x^+$ satisfying $(a\cdot x\cdot b)^+=b^+\cdot x^+\cdot b^+$ for $x\in X$ and $a,b\in A$.给出了$*$ - bimodules的代数模型。 $*$ - 双模式的希尔伯特空间表示形式定义和研究。获得类似GNS的表示定理。

A $*$-bimodule for a unital $*$-algebra $A$ is an $A$-bimodule $X$ which is a vector space with involution $x\mapsto x^+$ satisfying $(a\cdot x\cdot b)^+=b^+\cdot x^+\cdot b^+$ for $x\in X$ and $a,b\in A$. An algebraic model for $*$-bimodules is given. Hilbert space representations of $*$-bimodules are defined and studied. A GNS-like representation theorem is obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源