论文标题

仅平行幅度傅里叶神经网络

Massively Parallel Amplitude-Only Fourier Neural Network

论文作者

Miscuglio, Mario, Hu, Zibo, Li, Shurui, George, Jonathan, Capanna, Roberto, Bardet, Philippe M., Gupta, Puneet, Sorger, Volker J.

论文摘要

机器智能已成为现代社会的驱动因素。但是,由于基本物理(例如电容的电容充电)以及存储和处理数据的系统体系结构,其需求超过了基础电子技术,这两者都推动了处理器异质性的最新趋势。在这里,我们介绍了一种新型的仅振幅傅里叶 - 光学处理器范式,能够在一个时间阶段和100微秒短的延迟中处理大规模(1,000 x 1,000)矩阵。从概念上讲,信息流方向与二维可编程网络是正交的,该网络利用了10^6-并行的显示技术通道,并启用了一个原型演示,以卷积为像素的乘数在傅立叶域中,每次通过第二次通过浏览。所需的实际型域转换是通过零静电功率的光镜片被动地执行的。我们示范在2百万像素大型矩阵上以10 kHz的速率执行分类任务的卷积神经网络(CNN),分别以一个和两个数量级的级别来延迟当前的GPU和基于阶段的显示技术。在图像分类任务上训练此光学卷积层,并在混合光电极中有CNN中使用它,显示了98%(MNIST)和54%(CIFAR-10)的分类精度。有趣的是,与基于阶段的范式相比,仅振幅仅振幅与相干噪声具有固有的稳健性,并且比基于液体晶体的系统的延迟低2个数量级。除了促进新的加速器技术外,从科学上讲,这种仅幅度仅幅度平行的光学计算 - 范式可能是深远的,因为它可以消除以下假设:在机器智能方面,阶段信息超过光学处理器的振幅。

Machine-intelligence has become a driving factor in modern society. However, its demand outpaces the underlying electronic technology due to limitations given by fundamental physics such as capacitive charging of wires, but also by system architecture of storing and handling data, both driving recent trends towards processor heterogeneity. Here we introduce a novel amplitude-only Fourier-optical processor paradigm capable of processing large-scale ~(1,000 x 1,000) matrices in a single time-step and 100 microsecond-short latency. Conceptually, the information-flow direction is orthogonal to the two-dimensional programmable-network, which leverages 10^6-parallel channels of display technology, and enables a prototype demonstration performing convolutions as pixel-wise multiplications in the Fourier domain reaching peta operations per second throughputs. The required real-to-Fourier domain transformations are performed passively by optical lenses at zero-static power. We exemplary realize a convolutional neural network (CNN) performing classification tasks on 2-Megapixel large matrices at 10 kHz rates, which latency-outperforms current GPU and phase-based display technology by one and two orders of magnitude, respectively. Training this optical convolutional layer on image classification tasks and utilizing it in a hybrid optical-electronic CNN, shows classification accuracy of 98% (MNIST) and 54% (CIFAR-10). Interestingly, the amplitude-only CNN is inherently robust against coherence noise in contrast to phase-based paradigms and features an over 2 orders of magnitude lower delay than liquid crystal-based systems. Beyond contributing to novel accelerator technology, scientifically this amplitude-only massively-parallel optical compute-paradigm can be far-reaching as it de-validates the assumption that phase-information outweighs amplitude in optical processors for machine-intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源