论文标题

人口分层实现重新开放政策对死亡率和住院率的建模影响

Population stratification enables modeling effects of reopening policies on mortality and hospitalization rates

论文作者

Huang, Tongtong, Chu, Yan, Shams, Shayan, Kim, Yejin, Allen, Genevera, Annapragada, Ananth V, Subramanian, Devika, Kakadiaris, Ioannis, Gottlieb, Assaf, Jiang, Xiaoqian

论文摘要

目的:我们研究了当地重新开放政策对传染病人群组成及其对未来住院和死亡率的影响的影响。材料和方法:从2020年5月1日至2020年6月29日,我们收集了德克萨斯州休斯敦的每日住院和累积道德的数据集。这些数据集来自多个来源(美国事实,东南德克萨斯州地区咨询委员会Covid Covid 19 Covid 19 Covid 19 Report,TMC Daily News,TMC Daily News和New York York County County County Level Reported)。我们的模型,风险分层的HCD使用单独的变量来建模本地联系人的动态(例如,在家工作)和高触点(例如,在现场工作)亚群,同时共享参数以控制其各自的$ R_0(T)$随时间的时间。结果:我们评估了在第一阶段和第二阶段重新开放期间在德克萨斯州哈里斯县(大休斯顿地区人口最多的县)预测表现的模型。我们的模型不仅优于其他竞争模型,还支持反事实分析,以模拟未来政策在本地环境中的影响,这在现有方法之间是独一无二的。讨论:当地的死亡率和住院受到隔离和重新开放政策的影响。没有现有模型直接解释了这些政策对以明确可解释的方式感染,住院和死亡的当地趋势的影响。我们的工作是试图缩小这一重要的技术差距以支持决策。结论:尽管有几个局限性,但我们认为,在重新开放政策的影响下如何最好地重新思考如何最好地建模大流行病的动态。

Objective: We study the influence of local reopening policies on the composition of the infectious population and their impact on future hospitalization and mortality rates. Materials and Methods: We collected datasets of daily reported hospitalization and cumulative morality of COVID 19 in Houston, Texas, from May 1, 2020 until June 29, 2020. These datasets are from multiple sources (USA FACTS, Southeast Texas Regional Advisory Council COVID 19 report, TMC daily news, and New York Times county level mortality reporting). Our model, risk stratified SIR HCD uses separate variables to model the dynamics of local contact (e.g., work from home) and high contact (e.g., work on site) subpopulations while sharing parameters to control their respective $R_0(t)$ over time. Results: We evaluated our models forecasting performance in Harris County, TX (the most populated county in the Greater Houston area) during the Phase I and Phase II reopening. Not only did our model outperform other competing models, it also supports counterfactual analysis to simulate the impact of future policies in a local setting, which is unique among existing approaches. Discussion: Local mortality and hospitalization are significantly impacted by quarantine and reopening policies. No existing model has directly accounted for the effect of these policies on local trends in infections, hospitalizations, and deaths in an explicit and explainable manner. Our work is an attempt to close this important technical gap to support decision making. Conclusion: Despite several limitations, we think it is a timely effort to rethink about how to best model the dynamics of pandemics under the influence of reopening policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源