论文标题

估计具有完全卷积网络的多个干扰源下汽车雷达信号的幅度和相位

Estimating the Magnitude and Phase of Automotive Radar Signals under Multiple Interference Sources with Fully Convolutional Networks

论文作者

Ristea, Nicolae-Cătălin, Anghel, Andrei, Ionescu, Radu Tudor

论文摘要

雷达传感器逐渐成为公路车辆的广泛设备,在自动驾驶和道路安全方面发挥了至关重要的作用。雷达传感器的广泛采用增加了来自不同车辆的传感器之间干扰的机会,从而产生了损坏的范围轮廓和范围多普勒图。为了从范围多普勒图中提取多个目标的距离和速度,需要减轻影响每个范围轮廓的干扰。在本文中,我们提出了一个完全卷积的神经网络,以缓解汽车雷达干扰。为了在现实世界中训练我们的网络,我们引入了一个新的数据集,其中包括具有多个目标和多个干扰器的现实汽车雷达信号。据我们所知,我们是第一个在汽车雷达域中施加重量修剪的人,与广泛使用的辍学相比,取得了较高的结果。尽管大多数以前的作品成功地估计了汽车雷达信号的幅度,但我们提出了一个深度学习模型,可以准确估计该阶段。例如,我们的新方法将相对于常用的零技术的相位估计误差从12.55度减少到6.58度。考虑到缺乏用于汽车雷达干扰缓解的数据库,我们以开源的方式发布了我们的大规模数据集,该数据集可密切复制多种干扰案例的现实世界中的汽车场景,从而使其他人可以客观地比较其未来在该领域中的工作。我们的数据集可供下载:http://github.com/ristea/arim-v2。

Radar sensors are gradually becoming a wide-spread equipment for road vehicles, playing a crucial role in autonomous driving and road safety. The broad adoption of radar sensors increases the chance of interference among sensors from different vehicles, generating corrupted range profiles and range-Doppler maps. In order to extract distance and velocity of multiple targets from range-Doppler maps, the interference affecting each range profile needs to be mitigated. In this paper, we propose a fully convolutional neural network for automotive radar interference mitigation. In order to train our network in a real-world scenario, we introduce a new data set of realistic automotive radar signals with multiple targets and multiple interferers. To our knowledge, we are the first to apply weight pruning in the automotive radar domain, obtaining superior results compared to the widely-used dropout. While most previous works successfully estimated the magnitude of automotive radar signals, we propose a deep learning model that can accurately estimate the phase. For instance, our novel approach reduces the phase estimation error with respect to the commonly-adopted zeroing technique by half, from 12.55 degrees to 6.58 degrees. Considering the lack of databases for automotive radar interference mitigation, we release as open source our large-scale data set that closely replicates the real-world automotive scenario for multiple interference cases, allowing others to objectively compare their future work in this domain. Our data set is available for download at: http://github.com/ristea/arim-v2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源