论文标题
忠实纠缠的几何形状
Geometry of faithful entanglement
论文作者
论文摘要
量子状态分析中的一个典型概念是基于以下思想:某些纯净状态附近的状态具有相同的特性。暗示必须纠缠具有高忠诚的状态。可以以这种方式检测纠缠的州也称为忠实。我们证明了相应的基于忠诚的纠缠见证人的结构性结果,从而使两党制的忠诚产生了简单的条件。对于最简单的情况,可以直接确定两个量子位的忠诚,并为更高的维度提供准确的分析标准。最后,我们的结果表明,从某种意义上说,忠实的纠缠是有用的。此外,它们建立了与计算复杂性的联系,并简化了纠缠理论的几个结果。
A typical concept in quantum state analysis is based on the idea that states in the vicinity of some pure entangled state share the same properties; implying that states with a high fidelity must be entangled. States whose entanglement can be detected in this way are also called faithful. We prove a structural result on the corresponding fidelity-based entanglement witnesses, resulting in a simple condition for faithfulness of a two-party state. For the simplest case of two qubits faithfulness can directly be decided and for higher dimensions accurate analytical criteria are given. Finally, our results show that faithful entanglement is, in a certain sense, useful entanglement; moreover, they establish connections to computational complexity and simplify several results in entanglement theory.