论文标题
使用用于HARPS-N太阳能RVS的高斯工艺的低质量,长期系外行星的检测极限
Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar RVs
论文作者
论文摘要
径向速度(RV)搜索在宜人区域周围可居住区域的地球质量外行星受到恒星变异性对宿主恒星的影响的限制。尤其是,由于光谱图/斑点和星星而引起的对流蓝光和亮度不均匀性是对这种恒星RVS的可变性的主要贡献。高斯过程(GP)回归是对这些准周期变化进行统计建模的强大工具。我们使用来自太阳能望远镜的800天的RV在北半球(HARPS-N)光谱仪的高精度径向速度搜索器上研究了该技术的极限。这些数据提供了恒星RV变化的时间序列。在此数据集中,我们注入开普勒式信号,周期为100至500天,幅度在0.6至2.4 m s $^{ - 1} $之间。我们使用GP回归来符合所得的RV,并确定回收周期和振幅的统计显着性。然后,我们生成具有与太阳能数据相同的协方差特性的合成RV,以确定在观察基线上的下限,以检测在类似太阳恒星周围的金星状轨道中低质量行星。我们的模拟表明,使用电流发光仪和GP回归发现具有较大质量的行星($ \ sim $ 0.5 m s $^{ - 1} $)将需要超过12年的密集采样的RV观测值。此外,即使具有出色的变异性的完美模型,发现真正的Exo-venus($ \ sim $ 0.1 m s $^{ - 1} $)的当前仪器将需要超过15年。因此,需要下一代光谱仪和更好的恒星变异模型才能检测此类行星。
Radial velocity (RV) searches for Earth-mass exoplanets in the habitable zone around Sun-like stars are limited by the effects of stellar variability on the host star. In particular, suppression of convective blueshift and brightness inhomogeneities due to photospheric faculae/plage and starspots are the dominant contribution to the variability of such stellar RVs. Gaussian process (GP) regression is a powerful tool for statistically modeling these quasi-periodic variations. We investigate the limits of this technique using 800 days of RVs from the solar telescope on the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) spectrograph. These data provide a well-sampled time series of stellar RV variations. Into this data set, we inject Keplerian signals with periods between 100 and 500 days and amplitudes between 0.6 and 2.4 m s$^{-1}$. We use GP regression to fit the resulting RVs and determine the statistical significance of recovered periods and amplitudes. We then generate synthetic RVs with the same covariance properties as the solar data to determine a lower bound on the observational baseline necessary to detect low-mass planets in Venus-like orbits around a Sun-like star. Our simulations show that discovering planets with a larger mass ($\sim$ 0.5 m s$^{-1}$) using current-generation spectrographs and GP regression will require more than 12 yr of densely sampled RV observations. Furthermore, even with a perfect model of stellar variability, discovering a true exo-Venus ($\sim$ 0.1 m s$^{-1}$) with current instruments would take over 15 yr. Therefore, next-generation spectrographs and better models of stellar variability are required for detection of such planets.