论文标题
高度加速的MRI中的物理引导的神经网络的多面罩自我监督学习
Multi-Mask Self-Supervised Learning for Physics-Guided Neural Networks in Highly Accelerated MRI
论文作者
论文摘要
自我监督的学习表现出了巨大的希望,因为它可以在没有完全采样的数据的情况下训练深度学习MRI重建方法。当前用于物理学指导重建网络的自我监督学习方法分裂获得了两个不相交的数据,其中一种用于数据一致性(DC),而另一个用于定义培训损失。在这项研究中,我们提出了一种改进的自制学习策略,该策略更有效地使用获得的数据来训练物理学指导的重建网络,而没有完全采样的数据数据库。提出的通过数据下采样(SSDU)在获得的测量结果上采用掩盖操作,将其分为每个训练样本的多对脱节集,而使用DC单元的其中一个和其他损失来确定有效的损失,从而将其分为多对不相交,从而将其分为多对不相交,从而将其分为多对不相关,从而将其分为多对不相交,从而将其分为多对不相交,从而将其分为多对不相关,从而将其分为多对损失。多面罩SSDU应用于完全采样的3D膝盖上,并前瞻性地采样了3D脑MRI数据集,用于各种加速度和模式,并与CG-Sense和单罩SSDU DL-MRI进行了比较,并在提供完全采样的数据时受到监督的DL-MRI。膝盖MRI的结果表明,提出的多面膜SSDU的表现优于SSDU,并且与受监督的DL-MRI紧密相关。就SNR和混叠伪影方面,一项临床读者研究进一步将多面膜SSDU高于监督的DL-MRI。大脑MRI的结果表明,与SSDU相比,多面罩SSDU可获得更好的重建质量。读者的研究表明,与单罩SSDU相比,r = 8时的多面膜SSDU显着改善了重建,而在r = 8时,以及r = 2时的CG-Sensens。
Self-supervised learning has shown great promise due to its capability to train deep learning MRI reconstruction methods without fully-sampled data. Current self-supervised learning methods for physics-guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network and the other to define the training loss. In this study, we propose an improved self-supervised learning strategy that more efficiently uses the acquired data to train a physics-guided reconstruction network without a database of fully-sampled data. The proposed multi-mask self-supervised learning via data undersampling (SSDU) applies a hold-out masking operation on acquired measurements to split it into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi-mask SSDU is applied on fully-sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared to CG-SENSE and single-mask SSDU DL-MRI, as well as supervised DL-MRI when fully-sampled data is available. Results on knee MRI show that the proposed multi-mask SSDU outperforms SSDU and performs closely with supervised DL-MRI. A clinical reader study further ranks the multi-mask SSDU higher than supervised DL-MRI in terms of SNR and aliasing artifacts. Results on brain MRI show that multi-mask SSDU achieves better reconstruction quality compared to SSDU. Reader study demonstrates that multi-mask SSDU at R=8 significantly improves reconstruction compared to single-mask SSDU at R=8, as well as CG-SENSE at R=2.