论文标题
深度卷积神经网络模型,用于改善WRF预测
A Deep Convolutional Neural Network Model for improving WRF Forecasts
论文作者
论文摘要
数值天气预测模型的进步加速了,从而更全面地了解与天气和相关计算资源动态有关的物理现象。尽管有这些进步,但由于降低预测准确性的微分方程的参数化和线性化,这些模型含有固有的偏差。在这项工作中,我们研究了一种计算有效的深度学习方法,即卷积神经网络(CNN),作为一种后处理技术,可改善中尺度的天气和研究预测(WRF)预测(有一个小时的时间分辨率)。使用CNN体系结构,我们偏向于2018年WRF模型计算出的几个气象参数。我们训练具有四年历史的CNN模型(2014- 2017年),以调查WRF偏见的模式,然后减少这些偏见,然后在表面速度和方向和方向和方向,相对湿度,表面压力,表面压力,温度和表面温度,温度和表面温度,温度,温度,温度,温度和表面压力,温度和表面温度,温度和表面温度,温度,温度和表面温度,温度,温度,温度,温度和表面温度,温度和温度,温度,温度,温度,温度,温度,温度和温度。 WRF数据的空间分辨率为27公里,涵盖了韩国。我们从韩国气象管理站网络获得了93个气象站位置的地面观测。结果表明,所有站点的WRF预测有了明显的改善。表面风,降水,表面压力,温度,温度温度和所有站点相对湿度的年度一致性指数的平均指数为0.85(WRF:0.67),0.62(WRF:0.56),0.91,0.91(WRF:0.69),0.99,0.99(WRF:0.98)(0.98),0.98(WRF:0.98(WRF:0.98)和0.98)和0.92(WRF:0.98)(wr:0.98)(wr:0.98)(wr:0.98)。虽然这项研究重点是韩国,但可以在任何位置使用任何测量的天气参数应用所提出的方法。
Advancements in numerical weather prediction models have accelerated, fostering a more comprehensive understanding of physical phenomena pertaining to the dynamics of weather and related computing resources. Despite these advancements, these models contain inherent biases due to parameterization and linearization of the differential equations that reduce forecasting accuracy. In this work, we investigate the use of a computationally efficient deep learning method, the Convolutional Neural Network (CNN), as a post-processing technique that improves mesoscale Weather and Research Forecasting (WRF) one day forecast (with a one-hour temporal resolution) outputs. Using the CNN architecture, we bias-correct several meteorological parameters calculated by the WRF model for all of 2018. We train the CNN model with a four-year history (2014-2017) to investigate the patterns in WRF biases and then reduce these biases in forecasts for surface wind speed and direction, precipitation, relative humidity, surface pressure, dewpoint temperature, and surface temperature. The WRF data, with a spatial resolution of 27 km, covers South Korea. We obtain ground observations from the Korean Meteorological Administration station network for 93 weather station locations. The results indicate a noticeable improvement in WRF forecasts in all station locations. The average of annual index of agreement for surface wind, precipitation, surface pressure, temperature, dewpoint temperature and relative humidity of all stations are 0.85 (WRF:0.67), 0.62 (WRF:0.56), 0.91 (WRF:0.69), 0.99 (WRF:0.98), 0.98 (WRF:0.98), and 0.92 (WRF:0.87), respectively. While this study focuses on South Korea, the proposed approach can be applied for any measured weather parameters at any location.