论文标题
偏置关系,环境依赖性和恒星形成星系增长率的估计
Biasing relation, environmental dependencies and estimation of the growth rate from star forming galaxies
论文作者
论文摘要
星系星形成率(SFR)与暗物质(DM)之间的联系对于从下一代光谱调查中提取宇宙学信息至关重要,该调查将靶向靶向排放线星形成星系。使用从各种半分析模型(SAM)获得的公开可用的模拟星系目录,我们探索了SFR-DM连接,以从亮度/SFR转移中推断出增长率,$ f $,以推断出$ f $的速度 - 轻度方法(Feix等人,2016年)。强调SFR分布对环境密度的依赖性对10S-100S MPC的尺度。我们表明,将速度轻度方法应用于欧几里得样调查并不偏向环境效应。在所有型号中,测得的$β= f/b $参数的精度为$σ_β<0.17 $,$ z = 1 $。这转化为$σ_f\ sim 0.22 $和$σ_{(Fσ_8)} \ sim 0.1 $的错误,而无需在质量功率谱系上调用假设。这些错误与最近对星系聚类中红移空间扭曲的分析相同。与以前的研究一致,偏见因子$ b $大致是恒星形成星系的SFR的规模无关,恒定功能。其价值在$ z = 1 $的范围从$ 1.2 $到$ 1.5 $,具体取决于SAM食谱。尽管在所有SAMS较密集的环境中都有具有较高恒星质量的星系,但SFR对环境的依赖性更大。在大多数模型中,SFR概率分布偏向较大的区域中的较大值。一种模型表现出一种倒置的趋势,在密集的环境中抑制了高SFR。
The connection between galaxy star formation rate (SFR) and dark matter (DM) is of paramount importance for the extraction of cosmological information from next generation spectroscopic surveys that will target emission line star forming galaxies. Using publicly available mock galaxy catalogs obtained from various semi-analytic models (SAMs) we explore the SFR-DM connection in relation to the speed-from-light method (Feix et al. 2016) for inferring the growth rate, $f$, from luminosity/SFR shifts. Emphasis is given to the dependence of the SFR distribution on the environment density on scales of 10s-100s Mpc. We show that the application of the speed-from-light method to an Euclid-like survey is not biased by environmental effects. In all models, the precision on the measured $β=f/b$ parameter is $σ_β< 0.17$ at $z=1$. This translates into errors of $σ_f \sim 0.22$ and $σ_{(fσ_8)}\sim 0.1$, without invoking assumptions on the mass power spectrum. These errors are in the same ballpark as recent analyses of the redshift space distortions in galaxy clustering. In agreement with previous studies, the bias factor, $b$ is roughly a scale-independent, constant function of the SFR for star forming galaxies. Its value at $z=1$ ranges from $1.2$ to $1.5$ depending on the SAM recipe. Although in all SAMs denser environments host galaxies with higher stellar masses, the dependence of the SFR on the environment is more involved. In most models the SFR probability distribution is skewed to larger values in denser regions. One model exhibits an inverted trend where high SFR is suppressed in dense environment.