论文标题
COVID-ROBOT:监视拥挤的场景中的社会距离约束
COVID-Robot: Monitoring Social Distancing Constraints in Crowded Scenarios
论文作者
论文摘要
维持人之间的社会距离规范已成为不可或缺的预防措施,以减缓19 covid-19的传播。我们提出了一种新颖的方法,可以在拥挤的场景中自动检测到人类对,他们不遵守社会距离的约束,即它们之间约6英尺的空间。我们的方法对人群密度或行人步行指示没有任何假设。我们使用带有商品传感器的移动机器人,即RGB-D摄像头和2D LiDAR,在人群中执行无碰撞导航,并估算摄像机视野中所有检测到的个人之间的距离。此外,我们还为机器人配备了一个热摄像机,该热摄像头将热图像无线传输到安全/医疗保健人员,如果任何人表现出比正常温度高的人,则监视。在室内场景中,我们的移动机器人也可以与静态安装的CCTV摄像机结合使用,以进一步改善检测到的社交距离漏洞的数量,准确地追求步行行人等。我们在不同的静态和动态的室内场景中强调了方法的性能。
Maintaining social distancing norms between humans has become an indispensable precaution to slow down the transmission of COVID-19. We present a novel method to automatically detect pairs of humans in a crowded scenario who are not adhering to the social distance constraint, i.e. about 6 feet of space between them. Our approach makes no assumption about the crowd density or pedestrian walking directions. We use a mobile robot with commodity sensors, namely an RGB-D camera and a 2-D lidar to perform collision-free navigation in a crowd and estimate the distance between all detected individuals in the camera's field of view. In addition, we also equip the robot with a thermal camera that wirelessly transmits thermal images to a security/healthcare personnel who monitors if any individual exhibits a higher than normal temperature. In indoor scenarios, our mobile robot can also be combined with static mounted CCTV cameras to further improve the performance in terms of number of social distancing breaches detected, accurately pursuing walking pedestrians etc. We highlight the performance benefits of our approach in different static and dynamic indoor scenarios.