论文标题
使用观察数据的可运输性和数据融合的校准方法
A Calibration Approach to Transportability and Data-Fusion with Observational Data
论文作者
论文摘要
临床研究中的两个重要考虑因素是对内部和外部有效性的适当评估。尽管随机临床试验可以克服对内部有效性的几种威胁,但它们可能容易出现外部有效性不佳。相反,从广泛概括的人群中取样的大量前瞻性观察研究可能具有外部有效,但容易受到内部有效性的威胁,尤其是混淆。因此,解决跨种群研究结果的混淆和增强的方法分别对于内部和外部有效的因果推断至关重要。这些问题仍然存在与称为数据融合的可运输性密切相关的另一个问题。我们开发了一种校准方法来产生平衡权重,以解决混杂和采样偏差,从而有效估计目标人群平均治疗效果。我们将校准方法与两种额外的双重运动方法进行了比较,这些方法估算了干预措施对第二秒(可能是无关的目标人群)内结果的影响。可以扩展所提出的方法来解决数据融合问题,这些问题试图使用来自不同人群采样的两项相关研究的数据来评估干预措施的影响。进行了仿真研究,以证明不同技术的优势和相似性。我们还测试了校准方法的性能,以激励的真实数据示例进行比较,比较了Biguanides与磺酰氟尿的影响(两种最常见的口服糖尿病药物类药物,用于初始治疗 - 在历史群体中描述的全因死亡率都适用于美国当代人与糖尿病的现代人群。
Two important considerations in clinical research studies are proper evaluations of internal and external validity. While randomized clinical trials can overcome several threats to internal validity, they may be prone to poor external validity. Conversely, large prospective observational studies sampled from a broadly generalizable population may be externally valid, yet susceptible to threats to internal validity, particularly confounding. Thus, methods that address confounding and enhance transportability of study results across populations are essential for internally and externally valid causal inference, respectively. These issues persist for another problem closely related to transportability known as data-fusion. We develop a calibration method to generate balancing weights that address confounding and sampling bias, thereby enabling valid estimation of the target population average treatment effect. We compare the calibration approach to two additional doubly-robust methods that estimate the effect of an intervention on an outcome within a second, possibly unrelated target population. The proposed methodologies can be extended to resolve data-fusion problems that seek to evaluate the effects of an intervention using data from two related studies sampled from different populations. A simulation study is conducted to demonstrate the advantages and similarities of the different techniques. We also test the performance of the calibration approach in a motivating real data example comparing whether the effect of biguanides versus sulfonylureas - the two most common oral diabetes medication classes for initial treatment - on all-cause mortality described in a historical cohort applies to a contemporary cohort of US Veterans with diabetes.