论文标题
一级空间自适应控制变体使用分段 - 分解近似
Primary-Space Adaptive Control Variates using Piecewise-Polynomial Approximations
论文作者
论文摘要
我们提出了一种无偏的数值集成算法,该算法可以处理低频区域和多维积分的高频细节。它通过使用正交基近近似作为信号的控制变量,结合了正交和蒙特卡洛的整合。我们自适应地构建了构建的控制变量,该控制变量可以分析整合,并准确地重建了集成的低频区域。然后,我们通过使用残差的蒙特卡洛整合来恢复控制变量错过的高频细节。我们的工作通过在初级空间中工作,利用重要的抽样技术,从而允许多个映射的组合;这可以在基于正交的集成中进行多重重要性采样。我们的算法是通用的,可以应用于任何复杂的多维积分。我们通过四个具有低维度的应用来证明其有效性:异质参与媒体的透射率估计,均质媒体中的低阶散射,直接照明计算以及分布式效应的渲染。最后,我们通过计算高维信号的蒙特卡洛估计值的控制变化,并考虑了残留物上的这种额外维度,从而展示了我们的技术如何扩展到更高维度的积分。在所有情况下,与以前的方法相比,我们均显示出准确的结果和更快的收敛速度。
We present an unbiased numerical integration algorithm that handles both low-frequency regions and high frequency details of multidimensional integrals. It combines quadrature and Monte Carlo integration, by using a quadrature-base approximation as a control variate of the signal. We adaptively build the control variate constructed as a piecewise polynomial, which can be analytically integrated, and accurately reconstructs the low frequency regions of the integrand. We then recover the high-frequency details missed by the control variate by using Monte Carlo integration of the residual. Our work leverages importance sampling techniques by working in primary space, allowing the combination of multiple mappings; this enables multiple importance sampling in quadrature-based integration. Our algorithm is generic, and can be applied to any complex multidimensional integral. We demonstrate its effectiveness with four applications with low dimensionality: transmittance estimation in heterogeneous participating media, low-order scattering in homogeneous media, direct illumination computation, and rendering of distributed effects. Finally, we show how our technique is extensible to integrands of higher dimensionality, by computing the control variate on Monte Carlo estimates of the high-dimensional signal, and accounting for such additional dimensionality on the residual as well. In all cases, we show accurate results and faster convergence compared to previous approaches.