论文标题

伯恩斯坦类型定理,用于凸域上的最小图

A Bernstein Type Theorem for Minimal Graphs over Convex Domains

论文作者

Edelen, Nick, Wang, Zhehui

论文摘要

Given any $n \geq 2$, we show that if $Ω\subsetneq \mathbb{R}^n$ is an open convex domain (e.g. a half-space), and $u : Ω\to \mathbb{R}$ is a solution to the minimal surface equation which agrees with a linear function on $\partial Ω$, then $u$ must itself be linear.

Given any $n \geq 2$, we show that if $Ω\subsetneq \mathbb{R}^n$ is an open convex domain (e.g. a half-space), and $u : Ω\to \mathbb{R}$ is a solution to the minimal surface equation which agrees with a linear function on $\partial Ω$, then $u$ must itself be linear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源