论文标题
二维成分复杂的过渡金属葡萄糖合金的高通量计算表征
High-throughput computational characterization of two-dimensional compositionally complex transition-metal chalcogenide alloys
论文作者
论文摘要
二维(2D)二元过渡金属果仁核(TMC)(如钼二硫)具有出色的特性,作为光吸附装置的材料。合金二进制TMC可以形成2D组成复杂的TMC合金(CCTMCA),具有来自组成型TMC的显着特性。我们采用基于虚拟晶体近似(VCA)模型(VCA-DFT)的高通量工作流执行密度功能理论(DFT)计算。我们通过预测包括面内晶格常数,带隙,有效质量,旋转轨道耦合(SOC)以及MO-W-S-SE,MO-W-S-TE和MO-W-SE-TE 2D CCTMCAS的带状对齐方式来测试工作流。我们通过使用所选组合物的单位单元和超级细胞计算相同的属性来验证VCA-DFT结果。上述五个属性的VCA-DFT结果与DFT计算相当,而莫斯特和WSTE的几种属性中有些不准确。此外,2D CCTMCA可以形成光伏中使用的II型异质结构。最后,我们使用MO0.5W0.5SSE,MO0.5W0.5STE和MO0.5W0.5SETE 2D CCTMCAS来演示室温熵稳定的合金。它们还显示出300K的高电导率,有望用于光吸附设备。我们的工作表明,使用VCA-DFT计算的高通量工作流程提供了效率和准确性之间的权衡,从而在其他2D CCTMCA的计算设计中为各种应用开放了机会。
Two-dimensional (2D) binary transition-metal chalcogenides (TMCs) like molybdenum disulfide exhibits excellent properties as materials for light adsorption devices. Alloying binary TMCs can form 2D compositionally complex TMC alloys (CCTMCAs) that possess remarkable properties from the constituent TMCs. We adopt a high-throughput workflow performing density functional theory (DFT) calculations based on the virtual crystal approximation (VCA) model (VCA-DFT). We test the workflow by predicting properties including in-plane lattice constants, band gaps, effective masses, spin-orbit coupling (SOC), and band alignments of the Mo-W-S-Se, Mo-W-S-Te, and Mo-W-Se-Te 2D CCTMCAs. We validate the VCA-DFT results by computing the same properties using unit cells and supercells of selected compositions. The VCA-DFT results of the abovementioned five properties are comparable to that of DFT calculations, with some inaccuracies in several properties of MoSTe and WSTe. Moreover, 2D CCTMCAs can form type II heterostructures as used in photovoltaics. Finally, we use Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe 2D CCTMCAs to demonstrate the room-temperature entropy-stabilized alloys. They also exhibit high electrical conductivities at 300K, promising for light adsorption devices. Our work shows that the high-throughput workflow using VCA-DFT calculations provides a tradeoff between efficiency and accuracy, opening up opportunities in the computational design of other 2D CCTMCAs for various applications.