论文标题

Ancinet:一种有效的深度学习方法,用于大规模MIMO系统中估计CSI的反馈压缩

AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems

论文作者

Sun, Yuyao, Xu, Wei, Fan, Lisheng, Li, Geoffrey Ye, Karagiannidis, George K.

论文摘要

准确的通道状态信息(CSI)反馈在改善大规模多输入多输出(M-MIMO)系统的性能增长方面起着至关重要的作用,在这种情况下,困境与有限的反馈bandwith相比,困境过多的CSI高架头顶。通过考虑由于不完善的通道估计而引起的嘈杂的CSI,我们提出了一种新型的深神经网络结构,即Ancinet,以有限的带宽进行CSI反馈。 Ancinet从嘈杂的CSI样品中提取无噪声特征,以实现有效的CSI压缩以进行反馈。实验结果验证了所提出的ANCINET方法在各种条件下都优于现有技术。

Accurate channel state information (CSI) feedback plays a vital role in improving the performance gain of massive multiple-input multiple-output (m-MIMO) systems, where the dilemma is excessive CSI overhead versus limited feedback bandwith. By considering the noisy CSI due to imperfect channel estimation, we propose a novel deep neural network architecture, namely AnciNet, to conduct the CSI feedback with limited bandwidth. AnciNet extracts noise-free features from the noisy CSI samples to achieve effective CSI compression for the feedback. Experimental results verify that the proposed AnciNet approach outperforms the existing techniques under various conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源