论文标题

涉及分数$ p $ laplacian的choquard方程的规律性结果

Regularity results for Choquard equations involving fractional $p$-Laplacian

论文作者

Biswas, Reshmi, Tiwari, Sweta

论文摘要

在本文中,首先,我们解决了一类$ p $ chrastional choquard方程的弱解决方案的规律性: \ begin {equation*} \; \; \; \左。\ begin {array} {rl} (-Δ)_p^su&= \ left(\ displayStyle \int_Ω\ frac {f(y,u)} {| x-y |^μ} dy dy \ right)f(x,u),\ hspace {5mm} x \ u&= 0,\ hspace {35mm} x \ in \ mathbb r^n \ setminusω, \ end {array} \正确的\} \ end {equation*} where $Ω\subset\mathbb R^N$ i​​s a smooth bounded domain, $1<p<\infty$ and $0<s<1$ such that $sp<N,$ $0<μ<\min\{N,2sp\}$ and $f:Ω\times\mathbb R\to\mathbb R$ is a continuous function with at most critical growth condition (in the sense of Hardy-Littlewood-Sobolev不平等)和$ f $是原始的。 Next, for $p\geq2,$ we discuss the Sobolev versus Hölder minimizers of the energy functional $J$ associated to the above problem, and using that we establish the existence of the local minimizer of $J$ in the fractional Sobolev space $W_0^{s,p}(Ω).$ Moreover, we discuss the aforementioned results by adding a local perturbation term (at most critical in the sense在上述方程式的右侧sobolev不等式。

In this article, first we address the regularity of weak solution for a class of $p$-fractional Choquard equations: \begin{equation*} \;\;\; \left.\begin{array}{rl} (-Δ)_p^su&=\left(\displaystyle\int_Ω\frac{F(y,u)}{|x-y|^μ}dy\right)f(x,u),\hspace{5mm}x\in Ω, u&=0,\hspace{35mm}x\in \mathbb R^N\setminus Ω, \end{array} \right\} \end{equation*} where $Ω\subset\mathbb R^N$ is a smooth bounded domain, $1<p<\infty$ and $0<s<1$ such that $sp<N,$ $0<μ<\min\{N,2sp\}$ and $f:Ω\times\mathbb R\to\mathbb R$ is a continuous function with at most critical growth condition (in the sense of Hardy-Littlewood-Sobolev inequality) and $F$ is its primitive. Next, for $p\geq2,$ we discuss the Sobolev versus Hölder minimizers of the energy functional $J$ associated to the above problem, and using that we establish the existence of the local minimizer of $J$ in the fractional Sobolev space $W_0^{s,p}(Ω).$ Moreover, we discuss the aforementioned results by adding a local perturbation term (at most critical in the sense of Sobolev inequality) in the right-hand side in the above equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源