论文标题

重新访问功能选择方法到语音图像BCI数据集的应用

Revisiting the Application of Feature Selection Methods to Speech Imagery BCI Datasets

论文作者

Anaraki, Javad Rahimipour, Moon, Jae, Chau, Tom

论文摘要

脑部计算机界面(BCI)旨在建立和改善人类和计算机的相互作用。设计新硬件设备的兴趣越来越多,以通过各种技术(例如湿和干脑电图(EEG))和功能性近红外光谱(FNIRS)设备来促进大脑信号的收集。机器学习方法的有希望的结果吸引了研究人员将这些方法应用于其数据。但是,由于某些方法在特定数据集中的性能较低,因此可以忽略某些方法。本文展示了相对简单但功能强大的功能选择/排名方法如何应用于语音图像数据集并产生重要的结果。为此,我们介绍了两种方法:水平和垂直设置,将任何特征选择和排名方法用于语音图像BCI数据集。我们的主要目标是提高支持向量机,$ K $ - 最终邻居,决策树,线性判别分析和长期短期内存复发的神经网络分类器的分类精度。我们的实验结果表明,使用一小部分通道,我们可以保留,在大多数情况下,无论分类器如何,我们都可以提高所得分类精度。

Brain-computer interface (BCI) aims to establish and improve human and computer interactions. There has been an increasing interest in designing new hardware devices to facilitate the collection of brain signals through various technologies, such as wet and dry electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) devices. The promising results of machine learning methods have attracted researchers to apply these methods to their data. However, some methods can be overlooked simply due to their inferior performance against a particular dataset. This paper shows how relatively simple yet powerful feature selection/ranking methods can be applied to speech imagery datasets and generate significant results. To do so, we introduce two approaches, horizontal and vertical settings, to use any feature selection and ranking methods to speech imagery BCI datasets. Our primary goal is to improve the resulting classification accuracies from support vector machines, $k$-nearest neighbour, decision tree, linear discriminant analysis and long short-term memory recurrent neural network classifiers. Our experimental results show that using a small subset of channels, we can retain and, in most cases, improve the resulting classification accuracies regardless of the classifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源