论文标题

希尔伯特(Hilbert

Hilbert expansion of the Boltzmann equation with specular boundary condition in half-space

论文作者

Guo, Yan, Huang, Feimin, Wang, Yong

论文摘要

边界效应在鲍尔茨曼理论中的流体动力限制研究中起着重要作用。基于对粘性层方程的系统推导和研究,以及$ l^2 $至$ l^\ infty $框架,我们建立了希尔伯特扩展对玻尔兹曼方程的有效性,并具有镜面反射边界条件,从而导致可压缩的Euler方程和声学方程的派生。

Boundary effects play an important role in the study of hydrodynamic limits in the Boltzmann theory. Based on a systematic derivation and study of the viscous layer equations and the $L^2$ to $L^\infty$ framework, we establish the validity of the Hilbert expansion for the Boltzmann equation with specular reflection boundary conditions, which leads to derivations of compressible Euler equations and acoustic equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源