论文标题
希尔伯特(Hilbert
Hilbert expansion of the Boltzmann equation with specular boundary condition in half-space
论文作者
论文摘要
边界效应在鲍尔茨曼理论中的流体动力限制研究中起着重要作用。基于对粘性层方程的系统推导和研究,以及$ l^2 $至$ l^\ infty $框架,我们建立了希尔伯特扩展对玻尔兹曼方程的有效性,并具有镜面反射边界条件,从而导致可压缩的Euler方程和声学方程的派生。
Boundary effects play an important role in the study of hydrodynamic limits in the Boltzmann theory. Based on a systematic derivation and study of the viscous layer equations and the $L^2$ to $L^\infty$ framework, we establish the validity of the Hilbert expansion for the Boltzmann equation with specular reflection boundary conditions, which leads to derivations of compressible Euler equations and acoustic equations.